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Probes of Equipartition in Nonlinear 
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The time scales for equipartition to be reached are studied using a generaliza- 
tion of the recently introduced measure of ergodicity in liquids. The fi-Fermi- 
Pasta-Ulam model is chosen as an illustration. The measures are constructed by 
following the evolution of the systems using two independent initial conditions. 
The time-averaged property of an observable is calculated using the two 
dynamical trajectories. The measure is essentially the norm in the space of the 
observable obtained from the two trajectories. We show that the time-dependent 
behavior of the measure is a good indicator of the equipartition in large non- 
linear systems. The numerical results show that equipartitioning critically 
depends on the initial conditions, and even when adequate mode mixing occurs 
the time scales appear to be extremely long. 

KEY WORDS: Equipartition; ergodic measures; stochasticity. 

1. I N T R O D U C T I O N  

Several numerical experiments on large nonlinear Hamiltonian systems 
suggest that even in the thermodynamic limit, i.e., when the number of 
degrees of freedom tends to infinity, there exists an energy threshold for 
equipartition to be obtained. (1-4) The presence of a stochasticity threshold 
E s for systems with a few degrees of freedom has been well established (see, 
e.g., ref. 5). However, the presence of E s, or, more precisely, an equiparti- 
tion threshold energy E e for nonlinear systems with infinite degrees of 
freedom comes as a surprise. Below E~ (sometimes referred to as the non- 
ergodic phase) the structure of the phase space is extremely complicated. (6) 
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The phase space is broken into a union of several disjoint subspaces, whose 
number increases as the total energy E increases. Above a critical value of 
the total energy, which may correspond to the equipartition energy, the 
subspaces merge into a unique stochastic region. The physical implication 
of this finding is that the phase space structure decomposes into disjoint 
invariant regions on the same constant-energy surface. This implies that the 
particular invariant region the system may be locked into critically depends 
on the initial conditions. The situation encountered in these examples 
clearly violates the ergodic hypothesis, which states that phase space 
averages become equal to the time averages irrespective of the initial 
condition used in the dynamics. (7) The existence of many disjoint invariant 
subspaces suggests that ergodic behavior can be obtained only by 
averaging the results of time-average properties of observables over all 
possible initial conditions. 3 

There are two different suggestions concerning the existence of E e in 
the thermodynamic limit for nonlinear Hamiltonian systems. Izrailev and 
Chirikov suggest that E e ~ 1IN as N--* 0% implying that in the thermo- 
dynamic limit the KAM theorem is not relevant. ~ Callegari et al. (1~ have 
argued that E~/N is related to the energy of the centrally excited mode. 
Numerical experiments on several large nonlinear systems strongly suggest 
that E~c/N is nonzero. (1-4) The analysis of the phase space structure in the 
"nonergodic" phase and the estimation of the dependence of E e on N have 
been made by introducing various probes of stochasticity. Livi eta/ .  (41 have 
used the spectral entropy as an indicator of equipartition. The normalized 
value of the spectral entropy (defined below) r/ vanishes in the ergodic 
phase and remains nonzero in the nonergodic phase. Thus, t/ serves as a 
global order parameter. They found that E e is nonzero when N ~ oe for 
both the ~ and /3 versions of the Fermi-Pasta-Ulam model. Similar 
conclusions were reached by Bennetin and Tenenbaum (m in their work on 
two-dimensional Lennard~ones systems. These authors used fluctuation 
spectra of the energies of normal modes of the system as a probe of equi- 
partition of energy. (11) 

In this paper we use the recently introduced measure of ergodic 
behavior to investigate the equipartitioning of energy in the/3 model of the 
FPU chain of oscillators. (12'13) The primary objective of our previous study 
was to devise a simple enough measure that can be used to probe the time 
scales needed for ergodic behavior to be obtained in large Hamiltonian 
systems. (12) The measure can be introduced by considering the dynamics of 
a system with a Hamiltonian H(p,  q) on a constant-energy surface. Let a 

3 Similar results have been found in complex systems such as mean-field spin glasses. See, e.g., 
ref. 8. 
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be a point in the phase space, which means specifying the coordinates and 
the momenta of all the degrees of freedom. Let f a  be the time-averaged 
property of an observable, 

T ao 

The superscript a denotes that the initial condition for the trajectory 
corresponds to the point a in the phase space. Let fb(p, q) be the time- 
averaged property off[p(s), q(s)], which is computed using Eq. (1.1) with 
b as the initial condition. A metric can be constructed using fa(p, q) and 
fb(p, q) as 

df(t) = [fa(p,  q)_fb(p, q)]2 (1.2) 

In the context of supercooled liquids and glasses we had chosen f to be the 
sum of the kinetic energy and one-half the potential energy of the ith 
particle. (12) The resulting energy metric (summed over all the particles in 
the system) was shown to obey a simple dynamical scaling law. More 
importantly, we showed that if the free energy hypersurface (which is more 
appropriate for liquids and glasses) partitioned into different valleys with 
any two valleys being separated by a bottleneck, then the metric de(t) 
could be an indicator of such partitioning. Furthermore, the scaling 
behavior of de(t) could be used to estimate approximate time scales for 
mixing of two phase points a and b belonging to two different valleys. The 
major purpose of this article is to use similar ideas to assess the 
approximate time scales for equipartition in large nonlinear Hamiltonian 
systems. Our technique should serve as complementary to the already cited 
methods for numerically studying stochastic behavior in these systems. (4'1~ 

We would like to comment on the limitations of numerical studies in 
establishing the stochasticity threshold in nonlinear Hamiltonian systems 
with (essentially) infinite number of degrees of freedom. The transition 
times between two valleys on the constant-energy surface can be extremely 
long, and can easily exceed the time scales of the computer experiments. 
For example, the time ~ needed for probing the entire allowed configura- 
tions on the constant-energy surface can scale as exp(const AE), where AE 
is the average barrier height between two valleys. Thus, although equiparti- 
tion could be established when t >> r, for all practical purposes one essen- 
tially has a breakdown of ergodicity. Consequently, numerical calculations 
alone cannot be used to establish with certainty the existence of E s, but 
they can serve as a useful guide for the approach to equipartition. It is 
this aspect that we wish to study using the above mentioned probes of 
stochasticity.(12'13) 

822/57/3-4-24 
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2. T H E  M O D E L  A N D  N U M E R I C A L  DETAILS  

The model consists of a chain of N nonlinearly coupled oscillators 
whose Hamiltonian is given by (14) 

O = ~, ~ - ~ ( X i - X i _ l ) 2 ~  - ( X i - ~ i _ l )  4 (2.1a) 
i = 0  

We assume that the ends of the chain are clamped, i.e., 

Xo-- XN--O (2,1b) 

This choice of boundary conditions is different from the periodic boundary 
conditions used by Livi et al. ~4) It is obvious that the precise boundary 
condition should have no bearing on any relevant results for N - - ) ~ .  
However, for finite N we find some significant differences. The unit of time 
is taken to be ~ = (m/#) 1/2, where m is the mass of an oscillator and # is 
the harmonic coupling constant. All these quantities have unit value in 
Eq. (1). The coupling constant fl has the value of 0.4. 

The classical equations of motion obtained from the Hamiltonian in 
Eq. (2.1) were integrated either by the Beeman algorithm or a fifth-order 
Runge-Kutta algorithm. The time step for the Beeman algorithm was 
At <~ 0.01 and the time step for the Runge-Kutta algorithm was At ~< 0.025. 
In all cases N = 32. The choice of initial condition for our purposes is of 
particular interest. If equipartitioning is to be obtained, then this should 
happen regardless of the particular initial condition used to generate the 
trajectory. Although the precise structure of the constant-energy phase 
space is hard to predict, the symmetry of the Hamiltonian can be utilized 
to suggest that the phase space is partitioned into three disjoint parts. The 
potential terms involving particle j and particle k = N - j  are equivalent 
because l = N/2 defines the midpoint of the chain. This means that if initial 
conditions satisfy 

Xj= +_XN j, Vj= +_VN-j, j =  1, 2,..., N/2 (2.2) 

then the symmetry [-given by ( + ) in Eq. (2.2)] or the antisymmetry [given 
by ( - )  in Eq. (2.2)] of the initial conditions with respect to the midpoint 
of the chain will be preserved for all future time. The third part of the phase 
space (M) is associated with initial conditions which do not satisfy either 
a symmetric ( + ) or an antisymmetric ( - ) initial condition. It is clear that 
these initial conditions do in fact characterize three disjoint parts of phase 
space. The further partitioning of phase space within the symmetry-allowed 
region depends on the value of the total energy, and in fact the dynamics 
of the system is a way to probe the phase space structure. Notice that the 
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phase space partitioning based on parity operation about the midpoint of 
the chain is not applicable when periodic boundary conditions are used. 

The partitioning based on the grounds of symmetry leads to an 
interesting selection rule for the flow of energy. (15) This is easily seen by 
expressing the Hamittonian in terms of the normal mode coordinates 
defined as 

X ~ ( t ) = ~ )  2 Aj(t) sin (2.3) 
j = 0  

In terms of the normal mode amplitudes, the quartic terms in the 
Hamiltonian which couple the various modes become 

/~ ~ N N N 

Z Z ~ A~AjAkA,#uk, (2.4a) 
t = l  j = l  k = l  l=1 

with 

1 
#ijk! = ~ fOif~OjfOk(~Ol( Bijk! q- Bok- t + Bi-jkt 

+Bij k-t+Bi-j-kl+B,-.j~ l+B~_~-k_t) (2.4b) 

where 

coj = 2 sin(jn/2N) (2.4c) 

and 

f i if i + j + k + l = O  
B~k~= -- if i + j + k + l =  +_2N (2.4d) 

otherwise 

The vanishing of coefficients lzijkz leads to the partitioning of phase space 
discussed above. 

The lack of mixing of the symmetric and antisymmetric regions implies 
that if initially a certain mode corresponding to the S region is excited, 
then equipartition can be expected to be obtained only among the sym- 
metric modes. The system is expected to behave in an ergodic manner if the 
allowed configurations belong to the restricted phase space. The selection 
rule implied in Eq. (2.4) can be used as a successful test of the stability of 
the algorithm used in integrating the equations of motion. This is par- 
ticularly important in assessing the ergodic behavior of long, finite chains 
by numerical methods. Recent numerical studies have suggested that 
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"roundoff errors" are sufficient to mix the various regions. (15)'4 We have 
found that if the symmetric/antisymmetric initial condition is imposed at 
the machine representation level and if the algorithm used to integrate the 
equations of motion faithfully preserves the symmetry of the Hamiltonian, 
then these three regions of phase remain truly disjoint. We have shown this 
to be the case using both the Beeman algorithm and the fifth-order Runge- 
Kut ta  algorithm. Thus, we believe that numerical roundoff errors do not 
contribute to the time dependence of the various quantities computed. 

3. N U M E R I C A L  R E S U L T S  

In order to study the ergodic properties of the clamped oscillator 
chains, we have used the measures discussed in the Introduction. One can 
in principle probe the onset of stochasticity by computing the Lyapunov 
exponents. ~5) However, the indicators we have used give more detailed 
information about  the dynamics of the trajectories in phase space. Further- 
more, our measures can be easily computed for systems with a large 
number of degrees of freedom. 

In our numerical experiments we considered three different initial 
excitations of the normal modes. The first corresponds to the excitation of 
all the symmetric modes (S), which are labeled n = 1, 3, 5 ..... In the second 
case all the even-numbered modes were excited, and this corresponds to the 
antisymmetric (A) case. The last case studied was the one in which all 
modes were excited, and this is the mixed (M) case. In all cases the total 
energy is approximately 18.327, and initially this energy is distributed 
equally among five modes. Two separate classes of modes were chosen for 
the initial distribution of the total energy. In the first case the five lowest 
modes were excited, and this was labeled a. We also studied a second case, 
labeled b, in which five of the intermediate modes were initially excited. By 
following the dynamics of the system using the two different initial 
conditions a and b the metric was constructed using Eq. (1.2). The initial 
momenta  were set to zero, and the normal mode amplitudes at t = 0 were 
adjusted so that the desired total energy is obtained. 

In order to assess the approach to equilibrium and the approximate 
time scales needed for exploring the allowed phase space (if ergodicity is 
obtained) we have used the following measures: 

4While we cannot claim to understand why the calculations reported in ref. I5 suggest 
between the symmetric and antisymmetric regions, it is reasonable to suggest that the 
machine level representation of the initial conditions used by them was neither fully 
symmetric nor fully antisymmetric with respect to the center of the chain. 
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(i) A measure dd( t  ) corresponding to the variable A is computed 
using Eq. (1.2), i.e. 

1 N 

&,(t)  = N E.= - (3.1a) 

where 

t 

~4Y('a)(t)----t f0 as l-A~")(s)] 2 (3.1b) 

and the normal mode amplitude Aj(t) is given by 

E X~")(t) sin (3.1c) 

This corresponds to the definition of the metric given in Eq. (1.2), where 
the observable f (p ,  q) is made from the time-averaged value of the square 
of normal mode amplitudes. The labels (a) and (b) in Eq. (3.1a) refer to the 
initial conditions for the two different trajectories. 

(ii) A metric similar to Eq. (3.1a) for the energy variable was used. 
This is obtained from the variables Ej( t )= co2~(t), and is given by 

1 

de(t ) = (.) (b~ 2 [Ej  ( t ) - E j  (t)] (3.2) 
= 

The properties of d~(t)  [or de(t)] can be easily inferred. If the system 
is ergodic (on the time scale of the numerical experiment, rexp), then d(t) 
should vanish for long times. This is because for time rexp the system 
explores all the allowed phase space, and consequently d}a)(Zexv)= 
J~b)(Texp). The nonvanishing (or, more precisely, any lack of decay) of the 
ergodic measures can be used to infer nonergodic behavior in Hamiltonian 
systems. The asymptotic time dependence indicates the approximate time 
scales needed for ergodicity to be established. The arguments presented 
above form the physical basis for using d(t) as appropriate measures for 
inferring ergodic behavior. 

(iii) Following Livi et al., (4) we also computed the spectral entropy 
H(t) 

NA 

H(t) = - ~ pj(t) In pj(t) (3.3) 
j = O  



796 Thirumalai  and Mounta in 

with pj(t)= Ej(t)/~x=0 Ei(t) and N A is the number of modes allowed by 
symmetry conditions discussed in Section 2. For  our example, NA = N/2 for 
the symmetric case, N A = N / 2 -  1 for the antisymmetric case, and N a = N 
for the mixed case. Notice that our definition of H(t) differs from that used 
by Livi et al. (4~ The spectral entropy is zero when only one mode remains 
excited for all times. When equipartitioning is reached, then pj = 1/NA, and 
thus the maximum value of the spectral entropy is H m a  x = in NA. In our 
numerical example H m a  x = 2.78 for the symmetric case, Hmax = 2.71 for the 
antisymmetric case, and H m a  x = 3.47 for the mixed case. The results for the 
three cases are presented below. 

3.1. Mixed Case 

The behavior of dd(t ) and de(t ) as a function of t is presented in 
Fig. 1. The two independent initial conditions were a and b corresponding 
to the two different initial excitations discussed earlier. The behaviors of 
dd(t) and dg(t) are very similar. For times greater than about 104 both the 
ergodic measures decay in time. The decay is characterized by the same 

10 

Z" 

8 

6 

= t i i i ~ i i i i i = = i i i i ~ i 

O0 30 60 90 120 150 180 

t / 1 0 0 r  

Fig. 1. Plot of d~(t) (e = ag or N) as a function of time for the mixed (M) case. The solid 
line corresponds to d~(t) and has been reduced by a factor of 100. The dashed line shows 

de(t ), The total energy E =  18.237. 
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functional form that we had found earlier in supercooled liquids and 
liquids near the glassy state. (12) The time dependence of d(t) (for both d 
and g) has the scaling form 

d~(t) ~f(tD~) (~ = sr or, g)  (3.4a) 

with 
f (x)  ~ 1/x, x ~> 1 (3.4b) 

The single parameter D~ is a generalized diffusion constant which charac- 
terizes the rate of exploration of the configuration space. Notice that the 
form suggested in Eq. (3.4) is valid only for times larger than a system- 
dependent characteristic time. For the present problem D~ is extremely 
slow, and only for times much larger than 2 x 10 4 does one expect ergodic 
behavior to be established. 

In order to further assess the relaxation of the different normal modes, 
we analyzed the contribution to d~(t) arising from all the modes. We 
~bund that both dd(t) and de(t) appear to be dominated by the lowest 
mode, which in this case corresponds to j = 1. This implies that on the time 
scale rexp all the other modes essentially exchange energy easily and one 
expects equipartitioning between these modes. 

Figure 2 is a plot of H m a  x - -  H(t) as a function of time. For the mixed 
case, H m a  x = 3.43. The two curves a and b refer to the two different initial 
excitations. For  both these cases H(t)~ H m a  x at long times. However, the 
approach to Hmax is faster when the initial excitation corresponds to a, 
namely when at t = 0 the total energy is distributed evenly between the 
lowest five normal modes. It is interesting that the H m a  x is approached 
from below. This is because, with time, more of the configuration is 
explored, and consequently the spectral entropy grows with time. The 
curves in Fig. 2 can be adequately described (for long times) by 

H(t)/Hm~ ~ (1 - A/t tj) (3.5) 

where/3 appears to be between 1 and 2. This form is not inconsistent with 
the form exhibited by Eq. (3.4). More careful numerical work is needed to 
determine precisely the value of/3. Our experience with ergodic measures 
and suggestions that a generalized central limit theorem seems applicable 
for several indicators we have used in other contexts lead us to believe that 
/3=1. 

3.2. S y m m e t r i c  and A n t i s y m m e t r i c  Case 

In Fig. 3 we show a plot of de(t) for the S and the A cases as a func- 
tion of t. The allowed modes for the S case are 1, 3, 5, etc., while only the 
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3.50, 

3,40. 

3.30. 
r . . - . ,  

3.20. 

3.10 

3,00 t i t i i t i i i i * i i i t ~ J i a 

20 40 60 80 I00 120 140 160 180 200 

t/looT 
Fig. 2. Spectral entropy H(t) for the mixed case as a function of time. The solid constant line 
parallel to the time axis corresponds to Hma x, the maximum value expected if equipartitioning 
is to be obtained. The solid curvy line corresponds to the case when the total energy is initially 
distributed among the low modes and the dashed line shows H(t) when the initial excitation 
corresponds to the intermediate modes. The total energy is the same as in Fig. 1. 

even modes  are a l lowed for the A case. I t  is clear that  for nei ther  of the two 
cases do  we find the decrease in ds(t) for long t i m e s - - a  character is t ic  of 
ergodic  systems. Thus,  we conclude that ,  based  on the dynamics  suggested 
by our  probes  of s tochast ici ty,  the f l - F P U  system appears  to be nonergod ic  
when only the modes  cor respond ing  to ei ther  the symmetr ic  or  the 
an t i symmetr ic  modes  are excited. F o r  these two cases we also c o m p u t e d  
the spectral  ent ropy.  The m a x i m u m  value Hma x is expected to be 2.78 (S) 
or  2.71 (A) if equ ipar t i t ion ing  of energy is obta ined.  (4) The asympto t i c  
value of H(t), H~, is found to be abou t  2.55. A plot  of H(t) versus t 
indicates  tha t  H(t) sa tura tes  at  H ~  for t greater  than  abou t  12,000. The 
sa tu ra t ion  of H(t) at a value less than  Hma x is an ind ica t ion  tha t  the system 
under  these condi t ions  is not  ergodic.  

I t  has been suggested that  Ho~ gives an es t imate  of the number  of  
excited degrees of function which cor responds  to the number  of modes  
among  which equ ipar t i t ion  of  energy is obta ined.  (4) Thus, one can write 
H ~  ~ exp(Ne~), where Neff is the number  of "degree of f reedom" exhibi t ing 
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Same as Fig. 1, except for the symmetric (S) case. 

ergodic behavior. For our problems we estimate Nerr~ 14. There are essen- 
tially one or two modes which do not exchange energy with others, leading 
to the breakdown of equipartition. We decompose d~o(t) into contributions 
from the different modes, and we find that de(t) is essentially dominated by 
the lowest frequency case. Thus, the mode 1 for the symmetric case and 
mode 2 for the antisymmetric case do not exchange energy with other 
modes asymptotically. The lowest frequency mode appears to be "frozen" 
or isolated. The freezing of the low-frequency modes suggests that the 
dynamics of the system is confined to lesser dimensional phase space than 
the allowed value--based on symmetry grounds and conservation of 
energy. 

It is interesting that the mixed case appears to exhibit the behavior 
characteristic of ergodic systems, while both the symmetric and antisym- 
metric cases do not show energy sharing between the low-frequency modes 
and the high-frequency modes. Qualitatively one can rationalize this in 
terms of the resonance overlap criterion due to Chirikov. ~5~'5 For the mixed 
case there appears to be appreciable overlap among the resonance layers 

s Energy sharing in the presence of resonances was also discussed by Ford.  (16) 
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(the resonances refer to the unperturbed system), and the system appears 
to be stochastic due to diffusion along these layers. The time scale for diffu- 
sion is extremely long. For the symmetric and nonsymmetric cases, 
stochastic behavior (and equipartition) is clearly achieved among all the 
modes except the two lowest modes. Using the Chirikov overlap criterion, 
one would conclude that the distance between the resonant modes is great 
enough such that no overlap occurs. This also suggests that there could 
exist isolating integrals (besides the energy) involving the low-frequency 
modes. 

In order to test the above interpretation, we computed the ergodic 
measures for the symmetric case for the total energy E =  50.0. We found 
that there appears to be equipartitioning of the energy among all the 
modes except the lowest one. The calculated ergodic measures exhibit the 
characteristic scaling behavior if the contribution from the first mode is 
neglected. Thus, in the symmetric (as well as the antisymmetric) case the 
distance between the lowest resonance is great enough to avoid any mixing. 

4. C O N C L U S I O N  

The central purpose of this paper was to show that the measures of 
ergodic behavior introduced recently can be used to study the approach to 
equilibrium in large nonlinear Hamiltonian systems. The main conclusions 
of the paper are as follows. 

1. The measures involving the time-averaged values of the mode 
energies or the amplitudes exhibit a scaling behavior for times longer than 
a system-dependent characteristic time. The diffusion constant appearing in 
the scaling form can be used to obtain the approximate time scales for 
equipartition to be obtained. For the /?-FPU model we have shown that 
equipartition is expected to be obtained only for certain initial modes of 
excitation. Even in this case, namely the mixed case, the time scales needed 
are very long, and therefore the approach to equilibrium is very slow. (4) 

When the energy is distributed among only the symmetric or antisymmetric 
cases, the system does not attain equipartition, and this is reflected in the 
dynamic behavior of the ergodic measures. 

2. The time dependence of the spectral entropy also obeys a scaling 
form similar to that of the ergodic measures. Thus, the rate of growth of 
entropy also is a useful indicator of the stochasticity threshold. However, 
the scaling behavior for d(t) is useful in assessing the time scales needed to 
approach equilibrium. 

3. The structure of the constant-energy phase space for these systems 
is quite complicated. It is because of this that the mixing of various modes 
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occur only for certain initial conditions. In a sense this simple system 
appears to have the features seen in complex systems such as structural 
glasses and spin glasses. (~7) For example, the lack of mixing seen in the 
asymmetric and the antisymmetric cases could be because the system is 
essentially in a metastable state with very long (much longer than the 
numerical time scale) relaxation times. If this were the case, the detailed 
examination of the phase space structure using the methods used here can 
give us insight into the nature of aperiodic states in complex systems. 
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